
Brønsted Acid Catalyzed Cyclization of Propargylic Alcohols with Thioamides. Facile Synthesis of Di- and **Trisubstituted Thiazoles**

Xiaoxiang Zhang, Wan Teng Teo, Sally, and Philip Wai Hong Chan*

Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637616, Singapore

waihong@ntu.edu.sg

Received June 30, 2010

A general and efficient method to prepare 2,4-di- and trisubstituted thiazoles via p-TsOH · H2O-catalyzed cyclization of trisubstituted propargylic alcohols with thioamides is described. The reaction was accomplished in moderate to excellent product vields under mild conditions that did not require the exclusion of air and moisture and offers an operationally simplistic and convenient route to this synthetically useful aromatic heterocycle.

Thiazoles are important structural moieties found in many natural products and compounds of current biological and material interest as well as versatile building blocks in organic synthesis.¹⁻⁴ Among the myriad reactions devoted to the construction of this aromatic heterocycle, ¹⁻⁴ the most often relied upon synthetic method is the Hantzsch thiazole synthesis,³ which makes use of α -halo ketones and thioamides as the substrates. While recent efforts have led to a number of advances made in the development of this reaction,^{1,4} the establishment of more versatile and flexible

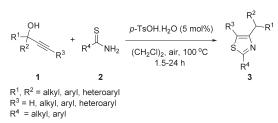
methodologies to functionalized thiazoles with selective control of substitution patterns are still needed. This is all the more so if it can be accomplished with low cost and readily available starting materials and catalysts that follow the principles of atom economy.⁵ One such synthetic strategy has been to replace the electrophile in these reactions with a propargylic alcohol in the presence of a Lewis acid catalyst.^{4,6} According to the seminal reports by the groups of Zhan^{4a} and Yoshimatsu,^{4b} these catalytic systems are thought to proceed via either an allenic or propargylic cationic species that underwent the [3 + 2] cycloaddition process. Although shown to be efficient, producing H₂O as potentially the only byproduct, this was countered by the likelihood of forming metal impurities that lessened the potential of this approach for scale-up applications. Added to this is a substrate scope that is limited to ones containing functional groups that cannot take part in strong metal coordination. In this regard, we reasoned that these drawbacks could be readdressed by developing a Brønsted acid-catalyzed version of this regioselective thiazole forming reaction. An inexpensive and commercially available reagent class that has a high tolerance to air and moisture, Brønsted acids have been shown to mediate a wide variety of organic transformations in an efficient and selective manner.⁷⁻⁹ Recently, this has included stereoselective C-X (X = C, N, O, S) bond formation strategies that combine the use of Brønsted acid catalysis with alcohol pro-electrophiles such as allylic, benzylic, and propargylic alcohols.^{8,9} For example, we recently reported TfOH to be a highly efficient catalyst

6290 J. Org. Chem. 2010, 75, 6290-6293

Published on Web 08/26/2010

⁽¹⁾ For selected reviews, see: (a) Jin, Z. Nat. Prod. Rep. 2009, 26, 382. (b) Chen, B.; Heal, W. Five-Membered Rings with Two Heteroatoms, Each with Their Fused Carbocyclic Derivatives. In Comprehensive Heterocyclic Chemistry III; Katrizky, R., Rees, C. W., Scriven, E. F. V., Taylor, R. J. K., Eds.; Pergamon: New York, 2008; Vol. 4, p 635. (c) Wu, Y.-J.; Yang, B. V. Five-Membered Ring Systems: With N and S (Se, Te) Atoms. In Progress in *Heterocyclic Chemistry*; Gribble, G. W., Joule, J. A., Eds.; Elsevier: Oxford, 2007; Vol. 18, p 247. (d) Mustafa, S. M.; Nair, V. A.; Chittoor, J. P.; Krishnapillai, S. Mini-Rev. Org. Chem. 2004, 1, 375. (e) Jagodziński, T. S. Chem. Rev. 2003, 103, 197. (f) Eicher, T.; Hauptmann, S. The Chemistry of Heterocycles: Structures, Reactions, Synthesis, and Applications, 2nd ed.; Wiley-VCH: Weinheim, 2003. (g) Wipf, P. Chem. Rev. **1995**, 95, 2115.

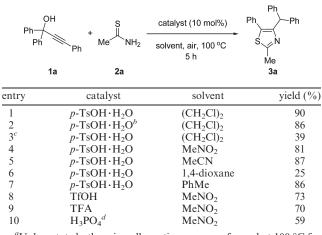
⁽²⁾ For selected recent examples, see: (a) Shi, B.; Blake, A. J.; Lewis, W.; Campbell, I. B.; Judkins, B. D.; Moody, C. J. J. Org. Chem. 2010, 75, 152. (b) Thomae, D.; Perspicace, E.; Xu, Z.; Henryon, D.; Schneider, S.; Hesse, S.; Kirsch, G.; Seck, P. *Tetrahedron* 2009, 65, 2982. (c) Kaleta, Z.; Makowski, B. T.; Soós, T.; Dembinski, R. Org. Lett. 2006, 8, 1625. (d) Kazmaier, U.; Ackermann, S. Org. Biomol. Chem. 2005, 3, 3184. (e) Shao, J.; Panek, J. S. Ackermann, S. Org. Diomot. Chem. 2005, 5, 5167. (c) Sharo, G., Hanss, S. O., Org. Lett. 2004, 6, 3083. (f) Rivkin, A.; Cho, S. S.; Gabarda, A. E.; Yoshimura, F.; Danishefsky, S. J. J. Nat. Prod. 2004, 67, 139. (g) Ganesh, T.; Schilling, J. K.; Palakodety, R. K.; Ravindra, R.; Shanker, N.; Bane, S.; Kingston, D. G. I. Tetrahedron 2003, 59, 9979. (h) DeRoy, P. L.; Charette, M. S. Chem. 2007. (c) NW, D. P. D. Deroit, S. S. Cherk, M. D. A. B. Org. Lett. 2003, 5, 4163. (i) Williams, D. R.; Patnaik, S.; Clark, M. P. J. Org. Chem. 2001, 66, 8463. (j) Bach, T.; Heuser, S. Angew. Chem., Int. Ed.
 2001, 40, 3184. (k) Cutignano, A.; Bruno, I.; Bifulco, G.; Casapullo, A.; Debitus, C.; Gomez-Paloma, L.; Riccio, R. Eur. J. Org. Chem. 2001, 775.


 ⁽³⁾ Hantzsch, A.; Weber, J. H. Ber. Dtsch. Chem. Ges. 1887, 20, 3118.
 (4) (a) Gao, X.; Pan, Y.; Lin, M.; Chen, L.; Zhan, Z.-P. Org. Biomol. Chem. 2010, 8, 3259. (b) Yoshimatsu, M.; Yamamoto, T.; Sawa, A.; Kato, T.; Tanabe, G.; Muraoka, O. Org. Lett. 2009, 11, 2952

^{(5) (}a) Trost, B. M. Acc. Chem. Res. 2002, 35, 695. (b) Trost, B. M. Science 1991, 254, 1471.

⁽⁶⁾ For reviews on the use of alcohols as pro-electrophiles, see: (a) Bandini, M.; Tragni, M. *Org. Biomol. Chem.* **2009**, *7*, 1501. (b) Ljungdahl, N.; Kann, N. Angew. Chem., Int. Ed. 2009, 48, 642. (c) Muzart, J. Tetrahedron **2008**, 64, 5815. (d) Muzart, J. Eur. J. Org. Chem. **2007**, 3077. (e) Muzart, J. Tetrahedron **2005**, 61, 4179. (f) Tamaru, Y. Eur. J. Org. Chem. **2005**, 2647.

⁽⁷⁾ For recent reviews, see: (a) Akiyama, T. Chem. Rev. 2007, 107, 5744. (b) Busca, G. Chem. Rev. 2007, 107, 5366. (c) Shao, L.-X.; Shi, M. Curr. Org. Chem. 2007, 11, 1135. (d) Yamamoto, H. Tetrahedron 2007, 63, 8377. (e) Yamamoto, H.; Boxer, M. B. Chimia 2007, 61, 279. (f) Ishihara, K.; Yamamoto, H. In New Frontiers in Asymmetric Catalysis; Mikami, K., Lautens, M., Eds.; John Wiley & Sons: New York, 2007; p 359. (g) Enders, D.; Grondal, C.; Huettl, M. R. M. Angew. Chem., Int. Ed. 2007, 46, 1570. (h) Yamamoto, H. In Asymmetric Synthesis; Christmann, M., Braese, S., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2007; p 153. (i) Taylor, M. S.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2006, 45, 1520.
 (j) Connon, S. J. Chem.—Eur. J. 2006, 12, 5418. (k) Akiyama, T.; Itoh, J.; Fuchibe, K. Adv. Synth. Catal. 2006, 348, 999.


SCHEME 1. p-TsOH·H₂O-Catalyzed Formation of 2,4-Diand Trisubstituted Thiazoles from Propargylic Alcohols and Thioamides

for the regioselective formation of conjugated enynes based on nucleophilic ring-opening of 1-cyclopropyl-2-propyn-1ols with alcohols.^{8b} As part of an ongoing program exploring the utility of alcohol pro-electrophiles in organic synthesis,^{8b,9} we report herein *p*-TsOH \cdot H₂O-catalyzed cyclization of trisubstituted propargylic alcohols with thioamides that did not require air- and moisture-free conditions (Scheme 1). The 2,4-di- and trisubstituted thiazole products were obtained as a single regioisomer in moderate to excellent yields comparable to those noted for the closely related metalpromoted approaches to this aromatic heterocycle.⁴ To our knowledge, a synthetic approach to thiazoles from trisubstituted propargylic alcohols catalyzed by a Brønsted acid is not known.

We began by choosing 1,1,3-triphenylprop-2-yn-1-ol **1a** and thioacetamide **2a** as the model substrates to establish the reaction conditions (Table 1). This initially revealed that subjecting 1 equiv of **1a** and 2 equiv of **2a** to 10 mol % of *p*-TsOH \cdot H₂O in 1,2-dichloroethane at 100 °C for 5 h gave the best result (entry 1). Under these conditions, 4-benzhydryl-2-methyl-5-phenylthiazole **3a** was afforded in 90% yield, comparable to those obtained for the closely related Sc- and Agcatalyzed reactions.⁴ The structure and regiochemistry of the thiazole product were determined on the basis of ¹H NMR measurements and X-ray crystallographic analysis (see Figure S33 in the Supporting Information).¹⁰ A slightly lower product yield of 86% was obtained on decreasing the catalyst loading from 10 to 5 mol % (entry 2). In contrast, lower product yields were found when the reaction was repeated with 10 mol % of *p*-TsOH \cdot H₂O at room temperature or on chan-

TABLE 1. Optimization of the Reaction Conditions⁴

^{*a*}Unless stated otherwise, all reactions were performed at 100 °C for 5 h with a catalyst/**1a/2a** ratio of 1:10:20. ^{*b*}Reaction conducted with 5 mol % of *p*-TsOH·H₂O. ^{*c*}Reaction conducted at room temperature. ^{*d*}Used as a 80% solution in H₂O.

ging the solvent from 1,2-dichloroethane to MeNO₂, MeCN, 1,4-dioxane, or toluene (entries 3-7). A similar outcome was found when stronger Brønsted acid catalysts in place of *p*-TsOH \cdot H₂O were examined (entries 8-10). In these latter reactions, the use of 10 mol % of TfOH, TFA, and H₃PO₄ in MeNO₂ gave **3a** in lower yields of 59-73%. On the basis of these studies, reaction of **1a** with **2a** in the presence of 5 mol % of *p*-TsOH \cdot H₂O in 1,2-dichloroethane at 100 °C for 5 h was deemed to provide the optimal conditions. By applying these conditions, we were pleased to find that a product yield of 927 mg (77%) could be afforded when the reaction was repeated on a large scale with 1 g (3.52 mmol) of **1a** and 0.53 g (7.04 mmol) of **2a**.

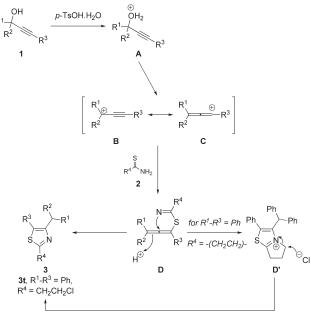
To define the generality of the present procedure, we next examined a series of propargylic alcohols 1b-w and thioamides $2\mathbf{a} - \mathbf{h}$ (Table 2). Reactions of propargylic alcohols bearing either an electron-withdrawing or electron-donating group on the carbinol or alkyne carbon with 2a gave the corresponding thiazoles in good to excellent yields (entries 1-13). Similarly, the analogous cyclizations with starting alcohols containing either an alkyl functional group at \mathbf{R}^{1} or R^3 or a terminal alkyne moiety afforded **30–q** in 54–79% yield, albeit requiring a catalyst loading of 30 mol % (entries 14, 15, and 17). In contrast, recovery of both the propargylic alcohol and thioamide was found when both substituents on the carbinol carbon of the alcohol substrate were an alkyl functional group as in 1q (entry 16). A propargylic alcohol containing an acid-sensitive acetylenic ketone moiety was also examined under the standard conditions but was found to give a mixture of decomposition products that could not be identified by ¹H NMR analysis of the crude mixture (entry 22). On the other hand, propargylic alcohols bearing a nitrile, thiophene, or carboxamide moiety were found to proceed well under the present conditions and give the corresponding thiazoles 3e, 3r, and 3s (at a catalyst loading of 30 mol %) in excellent yields (entries 4, 18, and 19). Additionally, reactions of starting alcohols 1a and 1c with other thioamide nucleophiles were found to give the corresponding thiazoles in moderate to excellent yields (entries 23-29). This included one example of a cyclic thioamide (2b) that gave 3t

⁽⁸⁾ For selected examples on Brønsted acid-catalyzed reactions with alcohol pro-electrophiles, see: (a) Jin, T.; Himuro, M.; Yamamoto, Y. Angew. Chem., Int. Ed. 2009, 48, 5893. (b) Mothe, S. R.; Chan, P. W. H. J. Org. Chem. 2009, 74, 5887. (c) Bras, J. L.; Muzart, J. Tetrahedron 2007, 63, 7942. (d) Sanz, R.; Martínez, A.; Guilarte, V.; Alvarez-Gutiérrez, J. M.; Rodríguez, F. Eur. J. Org. Chem. 2007, 4642. (e) Sanz, R.; Miguel, D.; Martínez, A.; Álvarez-Gutiérrez, J. M.; Rodríguez, F. Org. Lett. 2007, 9, 2027. (f) Sanz, R.; Martínez, A.; Miguel, D.; Alvarez-Gutiérrez, J. M.; Rodríguez, F. Org. Lett. 2007, 9, 727. (g) Shirakawa, S.; Kobayashi, S. Org. Lett. 2007, 9, 311. (h) Sanz, R.; Martínez, A.; Miguel, D.; Alvarez-Gutiérrez, J. M.; Rodríguez, J. M.; Rodríguez, F. Jus, Rodríguez, F. Adv. Synth. Catal. 2006, 348, 1841. (i) Motokura, K.; Fujita, N.; Mori, K.; Mizugaki, T.; Ebitani, K.; Kaneda, K. Angew. Chem., Int. Ed. 2006, 45, 2605. (j) Sanz, R.; Martínez, A.; Alvarez-Gutiérrez, J. M.; Rodríguez, F. Eur. J. Org. Chem. 2006, 1383. (k) Young, J.-J.; Jung, L.-J.; Cheng, K.-M. Tetrahedron Lett. 2000, 41, 3415.

⁽⁹⁾ For selected recent works by us see: (a) Kothandaraman, P.; Rao, W.;
Foo, S. J.; Chan, P. W. H. Angew. Chem., Int. Ed. 2010, 49, 4619. (b)
Kothandaraman, P.; Foo, S. J.; Chan, P. W. H. J. Org. Chem. 2009, 74, 5947.
(c) Zhang, X.; Teo, W. T.; Chan, P. W. H. Org. Lett. 2009, 11, 4990. (d) Rao, W.;
Zhang, X.; Sze, E. M. L.; Chan, P. W. H. J. Org. Chem. 2009, 74, 1740. (e) Rao,
W.; Chan, P. W. H. Chem.— Eur. J. 2008, 14, 10486.

⁽¹⁰⁾ CCDC 753779-753780 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

TABLE 2. Synthesis of Substituted Thiazoles 3b-z Catalyzed by p-TsOH·H₂O^{*a*}


	$\mathbb{R}^{3} + \mathbb{R}^{4} + \mathbb{N}_{2} + \mathbb{N}_{2} + \mathbb{N}_{12} + \mathbb{N}_{12$		$R^3 \rightarrow R^1$ or R^4 R^4 R^4	$R^1 - K^2$	S Me R ³
entry	1, $R^1/R^2/R^3$		2 , R ⁴	3	yield (%)
1	1b, 4 -FC ₆ H ₄ /Ph/Ph	2a,	Me	3b	96
2	1c, 4 -ClC ₆ H ₄ /Ph/Ph	2a		3c	98
3	$1d$, $4-BrC_6H_4/Ph/Ph$	2a		3d	93
4	1e, 4-CNC ₆ H ₄ /Ph/Ph	2a		3e	98
5	1f, $4\text{-MeC}_6\text{H}_4/\text{Ph}/\text{Ph}$	2a		3f	79
6	$1g, 4\text{-}\mathrm{FC}_{6}\mathrm{H}_{4}/4\text{-}\mathrm{FC}_{6}\mathrm{H}_{4}/\mathrm{Ph}$	2a		3g	94
7	1h , 4-ClC ₆ H ₄ /4-ClC ₆ H ₄ /Ph	2a		3h	85
8	1i, 4-BrC ₆ H ₄ /4-BrC ₆ H ₄ /Ph	2a		3i	88
9	1j, 4 -MeC ₆ H ₄ / 4 -MeC ₆ H ₄ /Ph	2a		3j	74
10	1k, $Ph/Ph/4$ - FC_6H_4	2a		3k	86
11	11, $Ph/Ph/4$ - ClC_6H_4	2a		31	87
12	1m, $Ph/Ph/4-MeC_6H_4$	2a		3m	89
13	1n, $Ph/Ph/4$ -MeOC ₆ H ₄	2a		3n	69
14^{b}	10, <i>i</i> -Pr/Ph/Ph	2a		30	76
15 ^b	1p, Ph/Ph/n-Bu	2a		3р	79
16	1q, Me/Me/Ph	2a		•	C T A
17^{b}	1r, Ph/Ph/H	2a		3q	54
18	1s, 4 -ClC ₆ H ₄ /4-ClC ₆ H ₄ /2-thienyl			3r	96 70
19^{b}	1t, Ph/Ph/(CH ₂) ₂ CONHPh	2a		3s	78
20 21	1u, H/Ph/Ph	2a		4a 4b	75 72
21	1v, H/4-FC ₆ H ₄ /4-BrC ₆ H ₄	2a 2a		40	d^{12}
22	1w, Ph/Ph/COC≡CPh 1a		-(CH ₂ CH ₂)-	3t	30
23 24	1a 1c	20, 2c,	·/	St 3u	91
24	10		$4-FC_6H_4$	3v	91
26	10		$4-ClC_6H_4$	3w	90
20	10		$2-ClC_6H_4$	3w 3x	93
28	1c		$4-BrC_6H_4$	3y	93
29	le		$4-\text{MeOC}_6\text{H}_4$	3z	97

^{*a*}All reactions were performed at 100 °C for 1.5–24 h with *p*-TsOH·H₂O/1/2 ratio = 1:20:40.¹¹ ^{*b*}Reaction conducted at 30 mol % catalyst loading. ^{*c*}No reaction based on TLC and ¹H NMR analysis of the crude mixture after a reaction time of 24 h. ^{*d*}Mixture of side products obtained that could not be identified by ¹H NMR analysis of the crude mixture.

and the structure of which was confirmed by X-ray crystallography (entry 23 and Figure S34 in Supporting Information-).¹⁰ In our hands, reactions of secondary alcohols **1u** and **1v** were the only instances where the corresponding *N*-propargylation products **4a** and **4b** were preferentially obtained as the sole product in 75 and 72% yield, respectively (entries 20-21). This contrasts markedly to a recent work reporting *p*-TsOH \cdot H₂O to catalyze the reaction of a closely related secondary propargylic alcohol and thioamide in chlorobenzene giving the corresponding thiazole in 12% yield.^{4a}

We tentatively propose the mechanism of the present reaction to proceed in a manner similar to that described for the analogous metal-catalyzed cyclizations of di- and trisubstituted propargylic alcohols with thioamides.⁴ As depicted in Scheme 2, this could involve Brønsted acidmediated dehydration of 1 to deliver alkynyl cation species **B** and its allenic resonance form **C**. Subsequent attack by the thioamide at the sterically less hindered acetylenic carbon center of **B** or allenic carbcation center **C** when followed by 5-*exo-trig* cyclization of the newly formed intermediate **D** would then provide the thiazole product. It might be anticipated that trapping at the sterically less hindered carbon center of **B** or **C** when R¹ and/or R² = aryl would limit any

SCHEME 2. Tentative Mechanism for *p*-TsOH · H₂O-Catalyzed Cyclization of 1 with 2

unfavorable steric interactions between the incoming nucleophile and these substituents of the cationic species.¹² Indeed, our earlier findings showing the exclusive formation of the *N*-propargylation adduct in cases where less sterically demanding secondary alcohols were examined would be consistent with the influence of such steric interactions on the regioselectivities found (entries 20 and 21 in Table 2). We surmise the origin of the chloro-substituted thiazole **3t** could be due to ring-opening of the iminium cation **D'** by a chloride anion generated in situ from the 1,2-dichloroethane solvent under the acidic conditions.

In summary, we have developed a Brønsted acid-catalyzed method for the cyclization of tertiary propargylic alcohols with thioamides as an efficient approach to 2,4-di- and trisubstituted thiazoles under conditions that did not require the exclusion of air and moisture. The reaction was shown to be applicable to a broad substrate scope that compliments the metal-mediated versions of this transformation.⁴ Moreover, the possibility of the present operationally simplistic method as a potential regioselective scale-up strategy for thiazole synthesis was exemplified by the large-scale preparation of one example in excellent yield. This is notable given the recent demand for more rapid and direct atom economical chemical processes that can make use of low cost and readily available reagents and catalysts.

Experimental Section

Representative Procedure for *p*-TsOH·H₂O-Catalyzed Synthesis of 2,4-Di- and Trisubstituted Thiazoles 3. To a 5 mL roundbottom flask containing 1,2-dichloroethane (3 mL) were successively added 1a (0.25 mmol), 2a (0.5 mmol) and *p*-TsOH·H₂O (12.5 μ mol). The resultant reaction mixture was heated to 100 °C and stirred for

⁽¹¹⁾ See the Supporting Information for the reaction times.

⁽¹²⁾ For similar regioselectivities observed in other reactions with propargylic cations, see refs 8f, 9c, and: (a) Huang, W.; Shen, Q. S.; Wang, J. L.; Zhou, X. G. J. Org. Chem. 2008, 73, 1586. (b) Ishikawa, T.; Aikawa, T.; Mori, Y.; Saito, S. Org. Lett. 2003, 5, 51. (c) Ishikawa, T.; Okano, M.; Aikawa, T.; Saito, S. J. Org. Chem. 2001, 66, 4635. (d) Edens, M.; Boerner, D.; Chase, C. R.; Nass, D.; Schiavelli, M. D. J. Org. Chem. 1977, 42, 3403.

5 h. On cooling to room temperature, the reaction mixture was concentrated under reduced pressure, and the residue obtained was directly purified by flash column chromatography on silica gel (eluent: n-hexane/EtOAc = 8:1) to give the title compound.

4-Benzhydryl-2-methyl-5-phenylthiazole (**3a**): white solid; mp 163–164 °C; ¹H NMR (CDCl₃, 400 MHz) $\delta_{\rm H}$ 2.65 (s, 3H), 5.51 (s, 1H), 7.17–7.19 (m, 2H), 7.20–7.27 (m, 8H), 7.36–7.37 (m, 5H); ¹³C NMR (CDCl₃, 100 MHz) $\delta_{\rm C}$ 19.5, 50.0, 126.4, 128.1, 128.3, 128.7, 129.2, 129.9, 132.0, 133.3, 143.4, 151.6, 163.9; IR (neat) 3019, 1599, 1533, 1493, 1215, 1074, 1030, 669, 634, 617, 584, 507 cm⁻¹; MS (ESI) *m/z* 342 [M + H]⁺; HRMS (ESI) calcd for C₂₃H₂₀NS 342.1316, found 342.1316.

Acknowledgment. This work is supported by a University Research Committee Grant (RG55/06) from Nanyang Technological University and Science and Engineering Research Council Grant (092 1010 053) from A*STAR, Singapore.

Supporting Information Available: Characterization data and ¹H and ¹³C NMR spectra for the starting alcohols 1, thiazole products 3, and *N*-propargylation adducts 4 and X-ray data for compounds 3a and 3t (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.